
Journal of Computational Physics 228 (2009) 833–860
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Dissipative issue of high-order shock capturing schemes
with non-convex equations of state

Olivier Heuzé, Stéphane Jaouen *, Hervé Jourdren
CEA/DAM-Île de France, Bruyères-le-Châtel, F-91297 Arpajon Cedex, France
a r t i c l e i n f o

Article history:
Received 20 December 2007
Received in revised form 29 September
2008
Accepted 4 October 2008
Available online 15 October 2008

Keywords:
Compressible fluid dynamics
Non-convex equation of state
Fundamental derivative
Riemann problem
Composite waves
High-order schemes
vNR-type methods
Godunov-type methods
Artificial viscosity
Flux limiters
0021-9991/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.jcp.2008.10.005

* Corresponding author.
E-mail address: stephane.jaouen@cea.fr (S. Jaoue
a b s t r a c t

It is well known that, closed with a non-convex equation of state (EOS), the Riemann prob-
lem for the Euler equations allows non-standard waves, such as split shocks, sonic
isentropic compressions or rarefaction shocks, to occur. Loss of convexity then leads to
non-uniqueness of entropic or Lax solutions, which can only be resolved via the Liu-Oleinik
criterion (equivalent to the existence of viscous profiles for all admissible shock waves).
This suggests that in order to capture the physical solution, a numerical scheme must pro-
vide an appropriate level of dissipation. A legitimate question then concerns the ability of
high-order shock capturing schemes to naturally select such a solution. To investigate this
question and evaluate modern as well as future high-order numerical schemes, there is
therefore a crucial need for well-documented benchmarks. A thermodynamically consis-
tent C1 non-convex EOS that can be easily introduced in Eulerian as well as Lagrangian
hydrocodes for test purposes is here proposed, along with a reference solution for an initial
value problem exhibiting a complex composite wave pattern (the Bizarrium test problem).
Two standard Lagrangian numerical approaches, both based on a finite volume method, are
then reviewed (vNR and Godunov-type schemes) and evaluated on this Riemann problem.
In particular, a complete description of several state-of-the-art high-order Godunov-type
schemes applicable to general EOSs is provided. We show that this particular test problem
reveals quite severe when working on high-order schemes, and recommend it as a bench-
mark for devising new limiters and/or next-generation highly accurate schemes.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

This study deals with Euler equations and systems of conservation laws (SCL). It is well known that SCLs must be closed
by constitutive relations that characterize the thermodynamical properties of the considered materials. Concerning the Euler
equations, such relations are embodied in the definition of the specific internal energy e as a function of the specific volume s
and entropy S, which defines an equation of state (EOS) in complete form. Indeed, all other thermodynamical parameters
can be deduced from this relation (as an example, the pressure p and temperature T are implicitely defined by the Gibbs rela-
tion TdS ¼ deþ pds). As was noticed by Jouguet [23], we will see throughout this study that of particular importance is the
sign of one of these parameters, namely according to Thompson’s terminology [43] the fundamental derivative G. This
thermodynamical function, whose definition will be recalled in the next section, measures the convexity of isentropes in
the ðp; sÞ-plane. Retaining Wendroff’s terminology [47,48], we will refer as a non-convex EOS, an EOS such that this
fundamental derivative may become negative. Be aware that such a definition of non-convex EOS may be misleading. Indeed,
thermodynamic stability requires that eðs; SÞ is a convex function of its arguments [3,6] – implying by the way that the
. All rights reserved.
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system of conservation laws is hyperbolic – and throughout this work we will always assume that this latter property is
satisfied.

To understand the wave structure as well as to devise numerical schemes to compute solutions to SCLs, a preliminary step
consists in the study of Riemann problems (i.e. initial value problems whose initial data are scale-invariant). Influence of
EOSs on Riemann problems for the Euler equations has been widely discussed in the literature (see the important review
article of Menikoff and Plohr [34] and included references). First limited to the perfect gas dynamics system, the theory
has been extended to more general EOSs in the 40s by Bethe [5] and Weyl [49]. In addition to thermodynamic consistency,
their theory (often referred as the standard theory) precisely lies on the additional assumption that the fundamental deriv-
ative G is strictly positive (convex EOSs). Within this context, existence and uniqueness of solutions to Riemann problems
were widely discussed in [41]. This additional assumption ðG > 0Þ is generally satisfied by most materials. Nevertheless,
it excludes some interesting physical situations. Indeed, near critical points or when phase transitions occur, isentropes usu-
ally loose their convexity. Anomalous wave structure then results [8,34,52]: instead of classical (i.e. simple) waves one may
encounter composite waves which include split shocks, sonic isentropic compressions or rarefaction shocks (see [19] for a
recent review on this topic). As it was reported in [34], loss of convexity leads to non-uniqueness of solutions to Riemann
problems which cannot be resolved neither by the standard entropy condition, nor by the Lax criterion [29]. The question
of uniqueness is then generally resolved via the Liu-Oleinik criterion [31,32], which is equivalent for all admissible shocks
to admit a viscous profile. This was also noticed in Wendroff’s work [47,48]. All these properties have been illustrated in
[22] where a simplified phase transition EOS has been proposed: on a sample Riemann problem, a continuous family of
entropic solutions (i.e. an infinity) has been exhibited, two of them satisfying the Lax criterion, but only one having a viscous
profile. This has also an important impact on numerical methods. Since waves must admit viscous profiles, one may expect
that numerical schemes require strong enough dissipation to capture the admissible solution. Using a first-order Godunov-
type scheme, it was shown in [22] that, parametrized with the Courant number (i.e. depending on the amount of numerical
diffusion), this whole family of entropic solutions could be numerically retrieved. This implicitely means that it is the numer-
ical diffusion of the scheme which selects the solution. A legitimate question then concerns the ability of high-order shock
capturing schemes to naturally select the physically stable solution.

To investigate this question and evaluate modern as well as future high-order numerical schemes, there is therefore a
crucial need for well-documented (realistic) benchmarks. This is precisely the object of this paper. The aim here is to propose
a model EOS as simple as possible that mimic the anomalies caused by loss of convexity of isentropes in the ðp; sÞ-plane and
to provide the analytical solution to a complex Riemann problem which covers all these anomalies, namely composite
waves.

The model EOS presented in Section 3 has already been proposed in [19–21]. It is a Mie-Grüneisen-type EOS representa-
tive of real liquids and solids, but with a quite bizarre C1 reference potential for which the sign of the fundamental derivative
changes twice: this fictitious material will be called the Bizarrium hereafter. Thus its isentropes may smoothly loose their
convexity,1 as it is the case for the van der Waals EOS near a critical point [8,7,34] or for Bethe–Zel’dovich–Thompson
(BZT)-fluids [44,9,35]. The present EOS is nevertheless simpler since it naturally satisfies the thermodynamic stability
requirements (thus leading to a hyperbolic SCL). Following the precise and complete theoretical analysis given in [19,34],
both compressive and expansive branches of the Bizarrium composite wave curves are then briefly described at the end
of Section 3. This analysis leads to the benchmark proposal given in Section 4. The constant left and right states of this Rie-
mann test problem have been specially chosen such that the solution consists in a left-facing expansive composite wave (rar-
efaction/sonic rarefaction shock/rarefaction) and a right-facing compressive composite one (shock/sonic isentropic
compression/shock) separated by a contact discontinuity, thus including all the pathologies encountered in such a case.

Due to its simplicity, the Bizarrium EOS can be quickly included in any hydrodynamic code of both Eulerian or Lagrangian
type. Along with the reference solution proposed in Section 4, the Bizarrium test problem is therefore a quite simple and com-
plete benchmark to evaluate the behavior of numerical schemes on such cases. To illustrate difficulties encountered by var-
ious numerical schemes to capture the physical solution, we review in Section 5 two great classes of numerical methods,
namely the vNR-type method, introduced in 1950 by von Neumann and Richtmyer [39,46] and the Godunov-type method,
introduced in 1959 by Godunov [15]. In the present paper we focus on the Lagrangian approach, but all the numerical
schemes reviewed in Section 5 can also be used in Eulerian hydrocodes based on split Lagrange and remapping phases.

The first shock capturing approach recalled in Section 5.1 is based on an internal energy formulation. To achieve second-or-
der accuracy, the historical vNR scheme (Section 5.1.1) is staggered in both space and time. The original vNR scheme is not con-
servative in total energy, a defect corrected by many variants of the scheme: see for example [2,14,33,38,45,51]. In Section 5.1.2,
we recall one of these, namely a version of the BBC scheme reported in the 80s by Woodward and Colella [51]. To deal with
shocks, an artificial viscosity q must be added in the momentum and internal energy equations. Various formulations of q, some
of them being recalled in Section 5.1.3, are referenced in the literature. Since it seems that depending upon the amount of
numerical diffusion the scheme selects a physical or an unphysical solution, a special attention will be paid to its formulation.

The second shock capturing approach recalled in Section 5.2 is based on a total energy formulation and is fully conser-
vative. All unknowns are cell-centered and numerical schemes are based on exact or approximate Riemann solvers. The his-
1 The important case of polymorphic phase transformations (see for instance [52]) may be seen as a limit case of such a smooth non-convex EOS, for which
both inflexion points of isentropes are getting closer developing a kink [34].
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torical acoustic Riemann solver is recalled in Section 5.2.1 but it only leads to a first-order Godunov-type scheme. Hereagain,
a special attention will be paid to high-order extensions. Three different approaches that revealed quite robust and success-
ful over the years with general EOSs [25] are then reviewed: the second-order Godunov Anti-Diffusé scheme (GAD) inspired
from [11], the arbitrary high-order Godunov Acoustic Invariant Advection one [37] (GAIA) and the second- and third-order
Godunov-Hybride one [24] (GoHy). They are respectively described in Sections 5.2.2 to 5.2.3.

Numerical results obtained with all these schemes on the Bizarrium test problem are given in Section 6. For completion,
the effective order of the Godunov-type schemes described in Section 5.2 is evaluated on two standard smooth-flow test
problems. Results are given in Appendix A.

2. The Lagrangian hydrodynamic equations

Introducing q0 the initial mass density, s ¼ 1
q the specific volume, u the velocity, e the specific total energy and p the pres-

sure, the 1D slab compressible Euler equations in Lagrangian form read
q0ots� oXu ¼ 0;
q0otuþ oXp ¼ 0;
q0oteþ oXðpuÞ ¼ 0;

8><>: ð1aÞ
together with the fluid particle trajectories which are solution to
otx ¼ u with xjt¼0 ¼ X: ð1bÞ
From mass conservation one also has q0dX ¼ qdx ¼def dm, which defines the mass coordinate. Introducing U ¼ ðs;u; eÞt and
F ¼ ð�u; p; puÞt , system (1a) and (1b) therefore reads
otU þ omF ¼ 0; ð2aÞ
otx ¼ u: ð2bÞ
Introducing the specific internal energy e ¼ e� u2=2 and manipulating Eq. (1a) one can also replace the last equation (to-
tal energy conservation) by q0oteþ poXu ¼ 0 or equivalently by
oteþ pots ¼ 0: ð3Þ
3. A non-convex equation of state (EOS)

As was said in the introduction section, system (1a) is closed with a complete EOS of the type e ¼ eðs; SÞwhich we discuss
now.

3.1. The Mie-Grüneisen formulation

A widely used formulation to modelize solid as well as liquid materials is the Mie-Grüneisen-type EOS. It reduces the
function eðs; SÞ to corrections about a reference curve only parametrized by s. Let U0 denote this reference state (all quan-
tities indexed by 0 will refer to this state hereafter). The (complete) EOS considered here is defined by the following relation
eðs; SÞ ¼ ek0ðsÞ þ Cv0 T0 exp
S� S0

Cv0

þ gðsÞ
� �

; ð4aÞ
where
gðsÞ ¼ C0 1� s
s0

� �
: ð4bÞ
Here C0 and Cv0 are respectively the Grüneisen coefficient and the specific heat at constant volume of the reference state.
Both constants are assumed to be strictly positive.

By definition of a complete EOS, all other thermodynamic quantities can be deduced from relations (4a) and (4b). Indeed,
the pressure and temperature are deduced from the Gibbs relation:
Tðs; SÞ ¼ oe
oSjs
¼ eðs; SÞ � ek0ðsÞ

Cv0

;

pðs; SÞ ¼ �oe
osjS
¼ pk0ðsÞ þ C0

s0
ðeðs; SÞ � ek0ðsÞÞ;

8>><>>: ð5Þ
with
pk0ðsÞ ¼ �
dek0

ds
¼ �e0k0ðsÞ: ð6Þ
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For subsequent developments, we also recall some other thermodynamic quantities and their expression when applied to
a Mie-Grüneisen-type EOS (4a) and (4b).

� The adiabatic exponent c:
c ¼def s
p

o2e
os2 jS

¼ � s
p

op
osjS
¼ s

p
C0

s0
ðp� pk0ðsÞÞ � p0k0ðsÞ

� �
; ð7Þ
from which we deduce the Lagrangian sound speed ðqcÞ:
ðqcÞ2 ¼def cp
s ¼

C0

s0
ðp� pk0ðsÞÞ � p0k0ðsÞ: ð8Þ
� The Grüneisen coefficient C:
C ¼def� s
T

o2e
oSos

¼ C0
s
s0
: ð9Þ
� The specific heat at constant volume Cv :
Cv ¼def T
o2e
oS2

js

 !�1

¼ Cv0 : ð10Þ
� The fundamental derivative G:
G ¼def 1
2

s2

cp
o2p
os2 jS

¼ 1
2

s2

cp
p00k0ðsÞ þ

C0

s0

� �2

ðp� pk0ðsÞÞ
 !

: ð11Þ
As was recalled in the introduction section, thermodynamic stability requires that eðs; SÞ is a convex function of its argu-
ments (see [3 or 6] for instance). Using (4a) and (4b) and the above definitions, this results in the following inequalities:
o2e
os2 jS

P 0;

o2e
oS2

js
P 0;

o2e
oS2

js

o2e
os2 jS

P
o2e
oSos

 !2

:

8>>>>>>>>><>>>>>>>>>:
()

ðqcÞ2 P 0;
T

Cv0
P 0;

ðqcÞ2 P Cv0
C0
s0

� �2
T:

8>>><>>>: ð12Þ
Remark 1. The eigenvalues of system (1a) are real as soon as ðqcÞ2 P 0, so that thermodynamic stability also implies the
hyperbolicity of system (1a).

Remark 2. If ðqcÞ2 P 0, the fundamental derivative G and o2p
os2 jS have the same sign: G therefore measures the convexity of

isentropes in the ðp; sÞ-plane. In particular, if G > 0, the isentropes are convex.

Assuming that the domain of state space is a region in which T P 0, it can be easily shown, using (5) and (8), that con-
dition (12) reduces to
p0k0ðsÞ 6 0: ð13Þ
Therefore any reference potential ek0ðsÞ such that (13) holds leads to a thermodynamic consistent EOS.

3.2. The Bizarrium EOS

From what has been described above it is now rather easy to build a thermodynamic consistent EOS whose isentrope in
the reference state exhibits two concavity changes: one has just to select an appropriate potential ek0ðsÞ. The fictitious mate-
rial governed by the following EOS is called the Bizarrium.

3.2.1. The Bizarrium EOS definition
For convenience we introduce the variable
x ¼ s0

s
� 1: ð14Þ
The complete Bizarrium EOS is given by (4a) and (4b), together with the C1 potential
ek0ðsÞ ¼ e0 � Cv0 T0ð1þ gðsÞÞ þ K0s0

2
x2FðsÞ; ð15aÞ
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where
Fig. 1.
FðsÞ ¼ f0ðxÞ ¼
1þ s

3� 2
� �

xþ qx2 þ rx3

1� sx
; ð15bÞ
and the parameters given in Table 1.
From (15b), it is a simple matter to check that
f1ðxÞ ¼ f 00ðxÞ ¼
s
3� 2þ 2qxþ 3rx2 þ sf0ðxÞ

1� sx
;

f2ðxÞ ¼ f 01ðxÞ ¼
2qþ 6rxþ 2sf1ðxÞ

1� sx
;

f3ðxÞ ¼ f 02ðxÞ ¼
6r þ 3sf2ðxÞ

1� sx
:

8>>>>>><>>>>>>:
ð16Þ
From (6) and (15a) we therefore get
pk0ðsÞ ¼ �Cv0 T0C0q0 þ
K0xð1þxÞ2

2 ½2f 0ðxÞ þ xf1ðxÞ�;

p0k0ðsÞ ¼ �
K0ð1þxÞ3q0

2 ½2ð1þ 3xÞf0ðxÞ þ 2xð2þ 3xÞf1ðxÞ þ x2ð1þ xÞf2ðxÞ�;

p00k0ðsÞ ¼
K0ð1þxÞ4q2

0
2 ½12ð1þ 2xÞf0ðxÞ þ 6ð1þ 6xþ 6x2Þf1ðxÞ þ 6xð1þ xÞð1þ 2xÞf2ðxÞ þ x2ð1þ xÞ2f3ðxÞ�;

8>>><>>>: ð17Þ
so that all thermodynamic variables defined in the preceding section can now be easily computed.

3.2.2. Domain of validity
The reference potential (15a) is only meaningful for 1� sx > 0, which gives a lower bound for the specific volume: s must

be greater than s
1þs s0. On the other hand, thermodynamic stability requires that (13) holds. This also gives an upper bound for

the specific volume: s must be smaller than as0, where a ’ 1:2325742. We will therefore assume in the sequel that the spe-
cific volume always lies in this interval:
ls 2 D ¼ s
1þ s

s0;as0

� 	
: ð18Þ
This means that for the above EOS to be valid, the Bizarrium density must be comprised between 8113.102 and
16666.666 kg/m3.

3.3. Anomalous wave structure of the Bizarrium EOS

An analysis of relations (17) shows that p00k0ðsÞ ¼ 0 for s ¼ 0:875s0 and s ¼ 0:75s0, these points being the locus of inflexion
of the reference pressure curve pk0ðsÞ. Since, from (4a) and (5), one has
pðs; SÞ ¼ pk0ðsÞ þ
C0

s0
Cv0 T0 exp

S� S0

Cv0

þ gðsÞ
� �

;

this leads to two concavity changes for isentropes in the ðp; sÞ-plane. From Remark 2, the fundamental derivative is therefore
negative in a non-empty interval and changes sign twice. As an illustration, p and G on the isentrope S ¼ S0 are plotted in
Fig. 1.
Bizarrium EOS: pressure and fundamental derivative on the isentrope S ¼ S0, function of the specific volume. I1 and I2 are inflexion points of pðs; S0Þ.
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When the sign of G changes, anomalous wave structure results [19,34]. After having briefly recalled general principles to
solve Riemann problems, we review the different wave patterns that can be obtained with such an anomalous EOS. For a
precise theoretical analysis we refer the reader to [19,34].

3.3.1. Generalities on the Riemann problem for the Euler equations
A Riemann problem (RP) is an initial value problem such that initial conditions are scale-invariant. In one space dimen-

sion, initial data therefore consist of two constant states Ul and Ur on both sides of a discontinuity. From the structure of the
equations as well as these peculiar initial data, solutions are also expected to be scale-invariant. Since wave curves, by def-
inition, are the locus of all states that can be joined from an initial state U0 with a scale-invariant solution, solving the RP
amounts to construct wave curves associated to Ul and Ur . For the hydrodynamic system (1a), solutions are conceptually
easy to build: two families of waves (the 1- and 3-wave) propagates on both sides of a contact discontinuity (the 2-wave),
across which only pressure and velocity are continuous. Solving the RP therefore amounts to build wave curves associated to
Ul and Ur and to look for their intersection in the ðp;uÞ-plane.

A wave curve associated to an initial state U0 is composed of two branches: a compressive ðs < s0Þ and an expansive
ðs > s0Þ part. When the fundamental derivative G has a constant sign only simple waves are allowed [19,34]: smooth isen-
tropic scale-invariant solutions to (1a) or entropic shock waves satisfying the Rankine–Hugoniot jump relations.

For G > 0 – the most common case, also referred as the standard theory [5,49] – the compressive part is the locus of all
states that can be joined to U0 by a compressive shock wave while the expansive one is the locus of all states that can be
joined to U0 by an isentropic smooth scale-invariant solution to (1a).

Conversely, for G < 0, these results are inverted [19]: the compressive part is the locus of all states that can be joined to U0

by an isentropic smooth scale-invariant solution to (1a), while the expansive one is the locus of all states that can be joined
to U0 by a rarefaction shock wave.

When G is not of constant sign – as is the case for the Bizarrium EOS – each branch of wave curves are combinations of
simple waves which move as a single entity, called composite waves. For a simple wave not to approach the other, their prop-
agation speeds must be compatible. As an example, a smooth isentropic wave may be contiguous to a shock wave if and only
if it is sonic [19,34,52]. Taking this property into account, wave curves are then built using both particular cases mentioned
above, depending upon the sign of G (see [19]).

The fundamental derivative G being successively positive/negative/positive in the Bizarrium case, three simple waves
may propagate together: the compressive branch consists in a Hugoniot/isentrope/Hugoniot composite curve and con-
versely, the expansive one in a isentrope/Hugoniot/isentrope composite curve. They are briefly described in the two
Fig. 2. Bizarrium EOS: anomalous Bizarrium wave curves when crossing a non-convex region. Compressive (top) and expansive (bottom) branches of the
composite wave curve in the ðp; sÞ-plane (left) and entropy along these branches (right).
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following paragraphs and for further details we refer the reader to [19,34] for the general theory and to [20,21] for the
Bizarrium specific case.

3.3.2. The dynamic compression curve of the Bizarrium
Let us consider the Hugoniot curve H0 associated to the initial state U0 (Fig. 2 – top). Such a curve has several noticeable

points. There are two sonic points US1 and US2 such that US1 (resp. US2) is a local maximum (resp. minimum) of entropy. From
[34] we also know that H0 and isentropes have the same concavity in these points. The fundamental derivative G is there-
fore negative in US1. Following this isentrope for decreasing s, G is also negative in a neighbourhood of US1 (by continuity), till
the inflexion point UC . A third noticeable point, denoted UM , is the point where the Rayleigh line passing through US1 inter-
sects H0 a second time. Starting from U0 we get, by increasing the shock strength:

� if p 6 pS1: a simple classical shock wave. If p ¼ pS1, the flow behind the shock wave is sonic.
� If pS1 < p 6 pC: a sonic shock till state US1, followed by an isentropic compression wave.
� If pC < p < pM: a fast shock till state US1, followed by an isentropic compression wave till a state U� (such that

pS1 < p� < pC), followed by a slow shock. Both ends of the isentropic compression wave are sonic. To each state U� corre-
sponds a unique final state U given by the intersection of the Hugoniot curve H� and the sonic Rayleigh line whose slope is
�ðqcÞ2� .

� If p P pM: a simple classical shock wave.

3.3.3. The dynamic expansion curve of the Bizarrium
Let U0 be a state such that the isentrope S0 ¼ SðU0Þ passes through the non-convex region for increasing specific volumes

(Fig. 2 – bottom). As in the standard case ðG > 0Þ, it is possible to build a smooth simple wave along this isentrope till we
reach state UC , such that GðUCÞ ¼ 0. It is then not possible to follow S0 for s > sC , since wave speeds would not be ordered
monotonically: a discontinuity must appear. Hereagain, only one propagation speed is allowed: the state ahead this shock
wave must be a sonic state. A noticeable state on S0, denoted US1 in Fig. 2 (bottom), is the only state such that the Rayleigh
line RS1 whose slope is �ðqcÞ2S1 is also tangent to HS1 in another state with a lower pressure, namely US2. Starting from U0 we
get, by decreasing the final pressure:

� if p P pC: a classical smooth isentropic simple wave.
� If pC > p P pS2: a smooth isentropic simple wave, till a state U� such that pC < p� < pS1 followed by an entropic rarefaction

shock, sonic in U�. To each state U� corresponds a unique final state U given by the intersection of the Hugoniot curve H�

and the sonic Rayleigh line whose slope is �ðqcÞ2� . If p ¼ pS2, the flow behind the shock wave is also sonic.
� If p < pS2: a smooth isentropic simple wave till state US1, followed by a rarefaction shock till state US2, followed by another

smooth isentropic simple wave. Both ends of the rarefaction shock are sonic.
4. The Bizarrium numerical test problem

The Bizarrium test problem defined below has been specially designed to exhibit both complex wave patterns described in
the previous section. We also give the semi-analytical solution which has been obtained using a symbolic computation soft-
ware. The initial condition U0ðxÞ consists of two constant states on both sides of a discontinuity: U0ð0 6 x < 0:5Þ ¼ Ul and
U0ð0:5 < x 6 1Þ ¼ Ur with
Table 1
Coeffici

q0 ðkg=

K0 ðPaÞ
Cv0 ðJ=k
T0 ðKÞ
e0 ðJ=kg
S0

C0
Ul ¼
sl ¼ 0:7 10�4;

ul ¼ 0;
pl ¼ 1011;

8><>: and Ur ¼
sr ¼ 10�4;

ur ¼ 250;
pr ¼ 0:

8><>:

All values are given in the International System of Units. The right state is therefore the reference state whose characteristics
are given in Table 1, while the left one is characterized by a specific volume 0.7 times the reference one at a pressure of 100
GPa. Concerning the boundary conditions, easily applied with both Lagrangian and Eulerian hydrocodes, we impose a reflect-
ing wall on the left and a flow-out condition on the right.
ents of the Bizarrium EOS.

m3Þ 10,000 s 1.5

1011

g=KÞ 1000 q � 42080895
14941154

300
Þ 0

0 r
727668333
149411540

1.5
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Analytical composite wave curves associated to these states are plotted in Fig. 3 (top), in the ðp; sÞ (left) and ðp;uÞ (right)
planes. The exact solution to this Riemann problem is the following (states mentioned below are defined in Table 2).

� The left-facing wave is a composite expansive wave consisting in a rarefaction from Uy0 ¼ Ul to Uy1, followed by a rare-
faction shock from Uy1 to Uy2, sonic ahead and behind ðDl ¼ uy1 � cy1 ¼ uy2 � cy2Þ, followed by a rarefaction from Uy2 to Uyz.

� The right-facing wave is a composite compressive wave consisting in a fast shock from Uz0 ¼ Ur to Uz1, sonic behind
ðDrf ¼ uz1 þ cz1Þ, followed by an isentropic compression from Uz1 to Uz2, followed by a slow shock from Uz2 to Uzy, sonic
ahead ðDrs ¼ uz2 þ cz2Þ.

� States Uyz and Uzy are separated by a contact discontinuity.

The ðx; tÞ diagram and the analytical density profile are given in Fig. 3 (bottom).

Remark 3. Also useful for numerical experiments, two intermediate Riemann problems whose solutions consist in only one
composite wave may be extracted from the above Bizarrium test problem. Denoting u� ¼ 1:31912830324eþ 03 the contact
discontinuity velocity, these are defined by the following initial and boundary conditions.

Single composite expansive wave
The initial condition is
Fig. 3.
and den
Uðx; t ¼ 0Þ ¼
s ¼ 0:7 � 10�4;

u ¼ �u�;

p ¼ 1011;

8><>:

with a flow-out boundary condition imposed on the left and a reflecting wall on the right. The solution is given in Table 2
(top) together with the appropriate Galilean change for material velocity.

Single composite compressive wave
The initial condition is
Uðx; t ¼ 0Þ ¼
s ¼ 10�4;

u ¼ 250� u�;

p ¼ 0;

8><>:
Solution of the Bizarrium numerical test problem. Top: composite wave curves in the ðp;sÞ (left) and ðp; uÞ (right) planes. Bottom: ðx; tÞ diagram (left)
sity profile (right).



Table 2
Bizarrium numerical test problem: reference solution obtained with a symbolic computation code. Values in noticeable points refer to Fig. 3 in SI units: q in kg/
m3, p in Pa, T in K, e in J/kg, S in J/kg/K, c, u and D in m/s.

Rarefaction Uy0 ! Uy1/ Rarefaction shock Uy1 ! Uy2/Rarefaction Uy2 ! Uyz

Uy0 Uy1 Uy2 Uyz

Left composite wave
s=s0 0.7 7.26771712598e�01 9.51530533349e�01 9.90063177596e�01
q 1.42857142857e+04 1.37594788386e+04 1.05093842494e+04 1.01003655386e+04
p 1e+11 9.02744810817e+10 4.61924164830e+10 3.91351551833e+10
T 4.34761498896e+03 4.17648443099e+03 3.00982131883e+03 2.84078876598e+03
e 4.48657821135e+06 4.23449658149e+06 2.70089006334e+06 2.53682071541e+06
S 2.22360022067e+03 2.22360022067e+03 2.23314931883e+03 2.23314931883e+03
c 5.65147161146e+03 3.21862667515e+03 4.21400765023e+03 4.08074131794e+03
u 0 1.58878322311e+02 1.15425929739e+03 1.31912830324e+03
D �3.05974835284e+03

Shock Uz0 ! Uz1/Isentropic compression Uz1 ! Uz2/Shock Uz2 ! Uzy

Uzy Uz2 Uz1 Uz0

Right composite wave
s=s0 7.06725240438e�01 7.95477062357e�01 8.28348504127e�01 1
q 1.41497705584e+04 1.25710727225e+04 1.20722135070e+04 1.00000000000e+04
p 3.91351551833e+10 2.93828326982e+10 2.51154533425e+10 0
T 4.92847161357e+02 4.22603617534e+02 4.02271608164e+02 3.00000000000e+02
e 6.09511010352e+05 3.05456197415e+05 2.15555256788e+05 0.
S 5.65044944451e+01 3.58677842099e+01 3.58677842099e+01 0.
c 4.32661332053e+03 2.63689629270e+03 3.16854447133e+03 3.26726185054e+03
u 1.31912830324e+03 1.02492830520e+03 9.06590065091e+02 250
D 3.66182459790e+03 4.07513453642e+03
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with a reflecting wall imposed on the left and a flow-out condition on the right. The solution is given in Table 2 (bottom)
together with the appropriate Galilean change for material velocity.
5. A selection of Lagrangian shock capturing schemes

We provide in this section a brief description of various Lagrangian numerical schemes used to compute flows solution to
(2a) and (3). Two different approaches, both based on a finite volume method and used for about fifty years now in various
hydrocodes, are recalled in Sections 5.1 and 5.2. The main difference between the two approaches is that the first one is
based on a non-conservative internal energy formulation, the second being fully conservative, based on a total energy
formulation.

The 1D domain ½Xmin;Xmax� is discretized in N cells Ij ¼ Xj�1
2
;Xjþ1

2

h i
, with X1

2
¼ Xmin and XNþ1

2
¼ Xmax. The mass coordinates

are therefore given by
m1
2
¼ 0;

mjþ1
2
¼ mj�1

2
þ Dmj for j ¼ 2; . . . ;N;

(
with Dmj ¼

Z X
jþ1

2

X
j�1

2

q0dx ¼ q0;jDXj:
5.1. vNR-type schemes

With this class of schemes initiated by von Neumann and Richtmyer in 1950 [39,46], the unknowns are cell-centered,
except the velocity which is defined at each mesh interface. The historical vNR scheme, which is also staggered in time, is
recalled in Section 5.1.1. The BBC variant of this scheme, reported in the 80s by Woodward and Colella in [51] uses velocities
defined at each node (staggered in space), but is unstaggered in time (see Section 5.1.2). With both variants, to deal with
shocks, an artificial viscosity q must be added in the momentum and internal energy equations. Various formulations of q
can be found in the literature. Some of them will be recalled in Section 5.1.3.

5.1.1. The vNR scheme
The discretized equations are the continuity equation ðq0dX ¼ qdxÞ and
otuþ omp ¼ 0;
oteþ pots ¼ 0;
with p ¼ pþ q, q being an artificial viscosity term, usually defined by (see [4] for instance)
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q ¼
�cqqDujDuj � clqcDu if Du < 0;
0 otherwise;




where cq and cl denote respectively quadratic and linear artificial viscosity coefficients.

To achieve second-order accuracy, all finite differences are centered. The velocity is defined here at each node of the mesh
xjþ1

2
and is also staggered in time (i.e. defined at tnþ1

2). We refer the reader to [46,39] for further details.
The nodal mass being defined by (30), the algorithm consists in solving successively

1. Computation of the velocity and node positions at time tnþ1
2:
u
nþ1

2
jþ1

2
¼ u

n�1
2

jþ1
2
� Dt

Dmjþ1
2

pn
jþ1 þ q

n�1
2

jþ1

� �
� pn

j þ q
n�1

2
j

� �� �
;

xnþ1
jþ1

2
¼ xn

jþ1
2
þ Dtu

nþ1
2

jþ1
2
;

2. Computation of the density (and specific volume) at time tnþ1:
qnþ1
j ¼ 1

snþ1
j

¼ Dmj

xnþ1
jþ1

2
� xnþ1

j�1
2

;

3. Approximation of the artificial viscosity at time tnþ1
2:
~q
nþ1

2
j ¼

� 2cq

snþ1
j
þsn

j

DujjDujj � clðqcÞnj Duj if Duj ¼ u
nþ1

2
jþ1

2
� u

nþ1
2

j�1
2
< 0;

0 otherwise;

8<:

4. Computation of the internal energy at time tnþ1:
enþ1
j ¼ en

j �
1
2
ðpnþ1

j þ pn
j Þ þ ~q

nþ1
2

j

� �
ðsnþ1

j � sn
j Þ;
5. Computation of the artificial viscosity at time tnþ1
2:
q
nþ1

2
j ¼ �cqqnþ1

j DujjDujj � clðqcÞnþ1
j Duj if Duj ¼ u

nþ1
2

jþ1
2
� u

nþ1
2

j�1
2
< 0;

0 otherwise:

8<:

The stability criterion is
max
j

ðqcÞnj
Dmj

;
jqn

j
�qn�1

j
j

qn
j
Dtn

� �
Dtnþ1 < 1;

Dt ¼min Dtnþ1; 1
2 ðDtn þ Dtnþ1Þ

� �
:

8><>:

5.1.2. The unstaggered in time BBC scheme

This scheme reported in [51] is recalled here with a different choice of artificial viscosity. Velocities are still defined at
each node of the mesh, but in contrast to the vNR scheme, they are defined at time tn like other quantities: the BBC scheme
is staggered in space but unstaggered in time. To achieve second-order accuracy in time, two intermediate levels in time,
denoted hereafter tnþ1

4 and tnþ1
2 are necessary. Here again, the scheme is formulated in internal energy and artificial viscosity

must be added to deal with shocks. It is to be noticed that since all quantities are defined at the same time, there is no ambi-
guity to define the total energy. Although formulated in internal energy, this scheme is conservative in total energy. With
notations introduced in the previous section, the discretized equations are
ots� omu ¼ 0;
otuþ omp ¼ 0;
oteþ pots ¼ 0:
At time tn, the density (or the specific volume), the velocity and the total energy are known. A time step consists of the fol-
lowing algorithm:

1. Computation of the artificial viscosity and first prediction of the velocity at time tnþ1
4:
qn
j ¼

�cqqn
j DujjDujj � clðqcÞnj Duj if Duj ¼ un

jþ1
2
� un

j�1
2
< 0;

0 otherwise;

(

u
nþ1

4
jþ1

2
¼ un

jþ1
2
� Dt

4
ððpn

jþ1 þ qn
jþ1Þ � ðpn

j þ qn
j ÞÞ

Dmjþ1
2

:
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2. Prediction at time tnþ1
2:
2 To
literatu
snþ1
2

j ¼ sn
j þ 1

2
Dt

Dmj
u

nþ1
4

jþ1
2
� u

nþ1
4

j�1
2

� �
enþ1

2
j ¼ en

j � ðpn
j þ qn

j Þ snþ1
2

j � sn
j

� �
9>=>;) p

nþ1
2

j ¼ p snþ1
2

j ; enþ1
2

j

� �
:

u
nþ1

2
jþ1

2
¼ un

jþ1
2
� Dt

2

p
nþ1

2
jþ1 þ qn

jþ1

� �
� p

nþ1
2

j þ qn
j

� �� �
Dmjþ1

2

:

3. Finalization at time tnþ1:
xnþ1
jþ1

2
¼ xn

jþ1
2
þ Dtu

nþ1
2

jþ1
2
;

unþ1
jþ1

2
¼ 2u

nþ1
2

jþ1
2
� un

jþ1
2
;

snþ1
j ¼ sn

j þ Dt
Dmj

u
nþ1

2
jþ1

2
� u

nþ1
2

j�1
2

� �
enþ1

j ¼ en
j � p

nþ1
2

j þ qn
j

� �
ðsnþ1

j � sn
j Þ

9>=>;) pnþ1
j ¼ pðsnþ1

j ; enþ1
j Þ:
If needed, the total energy is defined by
enþ1
j ¼ enþ1

j þ 1
8

Dmj�1 þ Dmj

Dmj
unþ1

j�1
2

� �2
þ Dmj þ Dmjþ1

Dmj
unþ1

jþ1
2

� �2
� �

: ð19Þ
The stability criterion is given by the standard CFL condition
max
j
ðqcÞj

Dt
Dmj

6 1: ð20Þ
5.1.3. Artificial viscosity formulations
In Section 5.1 we have given the expression of the artificial viscosity q as it is usually described (see [4] for instance).

Many expressions of q have been used since the historical paper of von Neumann and Richtmyer [46]. They are generally
written as the sum of a linear and a quadratic term in Du. The latter term concentrates the artificial viscosity near the shock
front while the former one has a more diffuse effect. Some of them are listed below.

� von Neumann–Richtmyer q [46]:

q ¼ �cqqDujDuj: ð21Þ
� Rosenbluth q [30,39]:
q ¼
�cqqDujDuj if Du < 0;
0 otherwise:



ð22Þ
� Landshoff q [28]:
q ¼
�cqqDujDuj � clqcDu if Du < 0;
0 otherwise:



ð23Þ
� ‘‘Magical” q combination2:
q ¼
�cqqDujDuj � clqcDu if Du < 0;
�clqcDu otherwise:



ð24Þ
To increase accuracy in the computation of the artificial viscosity and following Christensen [4], one often uses an affine
approximation of the velocity in each cell. Let us denote Duð1Þj ¼ ujþ1

2
� uj�1

2
the jump of velocity in cell j. A second-order

approximation of this jump is
Duð2Þj ¼ Duð1Þj �
1
2

Dmj
ou
om

� �
jþ1

2

þ ou
om

� �
j�1

2

 !
;

¼ Duð1Þj 1� 1
2

ou
om

� �
jþ1

2

,
ou
om

�
j
þ ou

om

� �
j�1

2

 ,
ou
om

� �
j

 ! !
;

¼ Duð1Þj 1� 1
2
ðuþj þu�j Þ

� �
;

our knowledge, the ‘‘Magical” q formulation combining features of the vNR, Rosenbluth and Landshoff artificial viscosities is not referenced in the
re.
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where
3 For
setting
[16]. Ve
conside
‘‘movin
ou
om

� �
j

¼
Duð1Þj

Dmj
and u�j ¼

ou
om

�
j�1

2

 ,
ou
om

� �
j

:

To preserve monotonicity, limiters have to be used. Introducing
r�j ¼
Duð1Þj�1

Dmj�1

! ,
Duð1Þj

Dmj

 !
;

three different ones will be considered:
u�j ¼ maxð0;minð1; r�j ÞÞ; the Minmod limiter; ð25aÞ
u�j ¼ maxð0;minð1;2r�j Þ;minð2; r�j ÞÞ; the Superbee limiter; ð25bÞ

u�j ¼ max 0;min 2;2r�j ;
Dmjr�j þ Dmj�1

Dmj þ Dmj�1

 ! !
; the Christensen limiter: ð25cÞ
5.2. Godunov-type schemes

In contrast to vNR-type schemes, the class of schemes introduced by Godunov in 1959 [15] is based on a total energy for-
mulation and all unknowns are cell-centered. Given a mesh size Dmj, an approximation Un

j of Uðmj; tnÞ at time tn is defined by
Un
j ¼

1
Dmj

Z m
jþ1

2

m
j�1

2

Uðm; tnÞdm: ð26Þ
Introducing the time step Dt ¼ tnþ1 � tn, an explicit Lagrangian Godunov-type scheme reads
Unþ1
j ¼ Un

j �
Dt

Dmj
FðUÞnjþ1

2
� FðUÞnj�1

2

� �
; ð27Þ
where FðUÞnjþ1
2
¼ ð�u�; p�; ðpuÞ�Þtjþ1

2
is the numerical flux. Solving (2a–b) with a Godunov-type scheme therefore amounts to

define these fluxes. This is done via exact or approximate Riemann solvers. Note that having determined u�
jþ1

2
and p�

jþ1
2

the

last component of the flux is classically defined by ðpuÞ�jþ1
2
¼ p�

jþ1
2
u�

jþ1
2
. Otherwise stated, this is the choice we made in the

following.
We recall in Section 5.2.1 the historical acoustic Riemann solver. This solver leads only to a first-order accurate Godunov-

type scheme. To increase the order of accuracy, three different approaches used in the hydrocode platform HERA [25] and
described in Sections 5.2.2–5.2.4 are then reviewed.

5.2.1. The (historical) first-order acoustic Riemann solver
To build this approximate Riemann solver, a classical way to proceed is to use the linearized Riemann invariants. Indeed,

along the characteristic curves C� defined by dm ¼ �ðqcÞdt, we have dp� ðqcÞdu ¼ 0 so that integration on these curves
leads to
p�
jþ1

2
� pj

� �
þ ðqcÞj u�

jþ1
2
� uj

� �
¼ 0 along Cþcoming from the cell Ij;

p�
jþ1

2
� pjþ1

� �
� ðqcÞjþ1 u�

jþ1
2
� ujþ1

� �
¼ 0 along C�coming from the cell Ijþ1:

8><>:

This 2� 2 linear system can be easily solved. It yields to
p�;O1
jþ1

2
¼
ðqcÞjpjþ1 þ ðqcÞjþ1pj

ðqcÞj þ ðqcÞjþ1
þ
ðqcÞjðqcÞjþ1

ðqcÞj þ ðqcÞjþ1
ðuj � ujþ1Þ;

u�;O1
jþ1

2
¼
ðqcÞjuj þ ðqcÞjþ1ujþ1

ðqcÞj þ ðqcÞjþ1
þ 1
ðqcÞj þ ðqcÞjþ1

ðpj � pjþ1Þ;

8>>><>>>: ð28Þ
which is the well-known acoustic Riemann solver3. It is proved in [12] that the Godunov scheme together with the acoustic
Riemann solver (28) is entropic under the CFL condition (20). Having defined the velocities of interfaces, Eq. (2b) is discretized in
the following way
mulae (28) are given in Godunov’s seminal paper [15], to justify an optimal Lagrangian mesh criteria on material interfaces. A simpler acoustic solver
ðqcÞj ¼ ðqcÞjþ1 is also detailed for the p-system with a numerical result, a work that played a key role in the derivation of the general nonlinear method
ry curiously, the acoustic Riemann solver is then disregarded for the Euler equations in Lagrangian coordinates, the iterative exact Riemann solver being
red instead, in the perfect gas case. In subsequent works [1,18,17], the Lagrangian formulation will not be mentioned any more, with unsplit Eulerian or
g grid” numerical fluxes that cannot be treated in the acoustic approximation.



4 The
coefficie

5 The
Lagrang

O. Heuzé et al. / Journal of Computational Physics 228 (2009) 833–860 845
xnþ1
jþ1

2
¼ xn

jþ1
2
þ Dtu�jþ1

2
: ð29Þ
The scheme (27) together with the Riemann solver (28) is only first-order accurate. Next we briefly recall high-order exten-
sions of this scheme (in both space and time), focusing on methods that can be developed to any order of accuracy.

5.2.2. The GAD numerical fluxes (for Godunov Anti-Diffusé)
To limit diffusion of the acoustic Riemann solver (28) one can add to it an anti-diffusive term. Since this latter generates

spurious oscillations near discontinuities, the anti-diffusive term has to be limited [11]. Let u�;O1
jþ1

2
and p�;O1

jþ1
2

denote the solu-

tions of the Riemann problem at interface xjþ1
2

obtained with the acoustic Riemann solver (28). Let also introduce
mjþ1
2
¼
ðqcÞj þ ðqcÞjþ1

2
Dt

Dmjþ1
2

;

where Dmjþ1
2

is the nodal mass given by
Dmjþ1
2
¼ 1

2
ðDmj þ Dmjþ1Þ: ð30Þ
The GAD numerical fluxes write the following way4:
u�;GAD
jþ1

2
¼ u�;O1

jþ1
2
þ 1

2 1� mjþ1
2

� �
uu;þ

jþ1
2

ujþ1 � u�;O1
jþ1

2

� �
�uu;�

jþ1
2

u�;O1
jþ1

2
� uj

� �h i
;

p�;GAD
jþ1

2
¼ p�;O1

jþ1
2
þ 1

2 1� mjþ1
2

� �
up;þ

jþ1
2

pjþ1 � p�;O1
jþ1

2

� �
�up;�

jþ1
2

p�;O1
jþ1

2
� pj

� �h i
;

8><>: ð31Þ
where ua;�
jþ1

2
for a ¼ u or p is the limiter we discuss now. To that end we introduce
ra;�
jþ1

2
¼

a�
jþ3

2
� ajþ1

a�
jþ1

2
� aj

and ra;þ
jþ1

2
¼

aj � a�
j�1

2

ajþ1 � a�
jþ1

2

;

and define
ua;�
jþ1

2
¼ u ra;�

jþ1
2

� �
:

Various limiters can therefore be defined. In the following sections, we will use
uðrÞ ¼maxð0;minð1; rÞÞ; the Minmod limiter; ð32aÞ
uðrÞ ¼maxð0;minð1;2rÞ;minð2; rÞÞ; the Superbee limiter: ð32bÞ
5.2.3. The GAIA numerical fluxes (for Godunov Acoustic Invariant Advection)
Arbitrary high-order schemes for the linear advection equation have been considered in [37] and applied to the linear

wave equation. Such schemes, based on a recursive formula for the advection flux, have also been used in the above paper
for a high-order generalization of the Godunov method in the case of the locally linearized Euler equations. Strictly speaking,
these schemes are of the prescribed high-order accuracy (in both space and time) only in the linear wave limit of the Euler
equations in Lagrangian coordinates5. The idea is to apply the advection flux recursive formula to the two decoupled advection
equations satisfied by the Riemann invariants J� ¼ u�

R
ðqcÞ�1dp, namely ot J

� � ðqcÞomJ� ¼ 0 [40]. Without going further into
the details, we now briefly describe this scheme.

Let us define the linearized Riemann invariants J�;nj ¼ un
j � ðqcÞ�1

j pn
j and eJ�;nj;k ¼ un

k � ðqcÞ�1
j pn

k . Using the recursive formulae
(33) it is possible to compute J�jþ1

2
at a prescribed order N in both space and time:
Jþ;N
jþ1

2
¼ Jþ;N�1

jþ1
2
� 1

N!

QM
i¼�m

i–0

ðmþj þ iÞ

0B@
1CA PN�1

k¼0
ð�1ÞkþNCk

N�1
eJþ;nj;jþm�k

� �
;

J�;N
jþ1

2
¼ J�;N�1

jþ1
2
� 1

N!

Qm
i¼�M

i–0

ðm�jþ1 þ iÞ

0B@
1CA PN�1

k¼0
ð�1ÞkþNCk

N�1
eJ�;njþ1;jþM�kþ1

� �
;

8>>>>>>>><>>>>>>>>:
ð33Þ
with m�j ¼ �ðqcÞj Dt
Dmj

, m ¼ E N
2

� �
, M ¼ E N�1

2

� �
and Cp

n ¼ n!
p!ðn�pÞ!. These recursive formulae are initialized with the upwind val-

ues of J� at the interface xjþ1
2
, i.e. Jþ;1

jþ1
2
¼ Jþ;nj and J�;1

jþ1
2
¼ J�;njþ1, corresponding to the first-order acoustic Riemann solver (28).
original GAD flux of Desgraz [11] in the mid 80s used Dukovicz’s Riemann solver [13] for the 1st-order term, with ad hoc per-material EOS-fitted
nts, instead of the acoustic solver considered here that is coefficient-free.

se schemes are also of the prescribed high-order accuracy in the linear advection limit of the Euler equations in Eulerian coordinates, when used with a
e + high-order remapping approach.
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To prevent numerical oscillations near shocks, these high-order Riemann invariants are connected to the first-order ones
(see paragraph 5.2.1) via a limiter u. Defining
rþ
jþ1

2
¼

eJþ;n
j;j
�eJþ;n

j;j�1
Dm

j�1
2

! , eJþ;n
j;jþ1
�eJþ;n

j;j

Dm
jþ1

2

 !
;

r�
jþ1

2
¼

eJ�;n
jþ1;jþ2

�eJ�;n
jþ1;jþ1

Dm
jþ1

2

! , eJ�;n
jþ1;jþ1

�eJ�;n
jþ1;j

Dm
jþ1

2

 !
;

8>>>>><>>>>>:
and u�jþ1

2
¼ u r�jþ1

2

� �
;

where Dmjþ1
2

is given by (30), the limited high-order Riemann invariants read
J�;lim
jþ1

2
¼ J�;1

jþ1
2
þu�jþ1

2
J�;N

jþ1
2
� J�;1

jþ1
2

� �
:

Corresponding high-order values of u�;lim
jþ1

2
and p�;lim

jþ1
2

are then obtained by solving the linear system
Jþ;lim
jþ1

2
¼ u�;lim

jþ1
2
þ ðqcÞ�1

j p�;lim
jþ1

2
;

J�;lim
jþ1

2
¼ u�;lim

jþ1
2
� ðqcÞ�1

jþ1p�;lim
jþ1

2
:

8<: ð34Þ
Various limiters can be used. In the sequel we will choose the Minmod limiter (32a). Two other limiting techniques inspired
from [10,37,42] will also be used and are recalled below.

The TVD limiter
Denoting sa1; . . . ;apt ¼ ½minða1; . . . ;apÞ;maxða1; . . . ;apÞ�, building a TVD flux amounts to enforce
Jþ;TVD
jþ1

2
2 seJþ;nj;j ;

eJþ;nj;jþ1t \ seJþ;nj;j ; J
þ;UL
j t;

J�;TVD
jþ1

2
2 seJ�;njþ1;j;

eJ�;njþ1;jþ1t \ seJ�;njþ1;jþ1; J
�;UL
jþ1 t;

8<: ð35aÞ
where
Jþ;UL
j ¼ eJþ;nj;j þ

1�mþ
j

mþ
j

eJþ;nj;j � eJþ;nj;j�1

� �
;

J�;UL
j ¼ eJ�;nj;j �

1þm�
j

m�
j

eJ�;nj;j � eJ�;nj;jþ1

� �
:

8><>: ð35bÞ
The MP limiter (for Monotonicity Preserving)
Defining
a�;nj;k ¼ eJ�;nj;k�1 � 2eJ�;nj;k þ eJ�;nj;kþ1;

a�;n
j;kþ1

2
¼minmodð4a�;nj;k � a�;nj;kþ1;4a�;nj;kþ1 � a�;nj;k ;a

�;n
j;k ;a

�;n
j;kþ1Þ;

8<:

the MP limiter consists in enforcing
Jþ;MP
jþ1

2
2 seJþ;nj;j ;

eJþ;nj;jþ1; J
þ;MD
jþ1

2
t \ seJþ;nj;j ; J

þ;UL
j ; Jþ;LC

j t;

J�;MP
jþ1

2
2 seJ�;njþ1;j;

eJ�;njþ1;jþ1; J
�;MD
jþ1

2
t \ seJ�;njþ1;jþ1; J

�;UL
jþ1 ; J

�;LC
jþ1 t;

8<: ð36aÞ
where
Jþ;MD
jþ1

2
¼ 1

2
eJþ;nj;j þ eJþ;nj;jþ1 � aþ;n

j;jþ1
2

� �
;

J�;MD
jþ1

2
¼ 1

2
eJ�;njþ1;j þeJ�;njþ1;jþ1 � a�;n

jþ1;jþ1
2

� �
;

Jþ;LC
j ¼ eJþ;nj;j þ

1�mþ
j

2mþ
j

eJþ;nj;j � eJþ;nj;j�1 þ aþ;n
j;j�1

2

� �
;

J�;LC
j ¼ eJ�;nj;j �

1þm�
j

2m�
j

eJ�;nj;j � eJ�;nj;jþ1 þ a�;n
j;jþ1

2

� �
:

8>>>>>>>>><>>>>>>>>>:
ð36bÞ
Note that the MP-limited interface values J�;lim
jþ1

2
lie in larger intervals than the TVD-ones (35a).

5.2.4. The GoHy numerical fluxes (for Godunov-Hybride)
At interface x0, the exact numerical flux between tn and tnþ1, which is given by
u� ¼ 1
Dt

Z tnþ1

tn
uðx0; tÞdt; for u ¼ ð�u;p; puÞt;
can be approximated by
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u� ¼ 1
Dt

Z tnþ1

tn
un

0 þ
ou
ot

� �n

0
ðh� tnÞ þ 1

2
o2u
ot2

 !n

0

ðh� tnÞ2 þ � � �
 !

dh;

¼ un
0 þ

1
2

Dt
ou0

ot

� �n

þ 1
6

Dt2 o2u0

ot2

 !n

þ � � � :
The procedure is to compute this integral at the desired order, replacing temporal derivatives by spatial ones. Indeed, the
impulse and total energy equations can be manipulated to give
otu ¼ �omp;

otp ¼ � qcð Þ2omu:



ð37Þ
From (11) one also gets after few manipulations oðqcÞ
os jS ¼ �q2cG. We therefore have
otðqcÞ2 ¼ �2qðqcÞ2Gomu: ð38Þ
Let u0, p0 and ðpuÞ0 denote approximations of u, p and pu at interface x0. Using (37), (38) and subsequent derivations (Cau-
chy–Kovaleskaya procedure), we therefore get
u� ¼ un
0 � Dt

2 ompþ Dt2

6 omððqcÞ2omuÞ þ � � � ;
p� ¼ pn

0 � Dt
2 ðqcÞ2omuþ Dt2

6 ððqcÞ2o2
mmpþ 2qGðqcÞ2ðomuÞ2Þ þ � � � ;

ðpuÞ� ¼ ðpuÞn0 � Dt
2 ðuðqcÞ2omuþ pompÞ þ Dt2

6 ðuðqcÞ2o2
mmp

þ2qGuðqcÞ2ðomuÞ2 þ 2ðqcÞ2ðomuÞðompÞ þ pomððqcÞ2omuÞÞ þ � � � :

8>>>>><>>>>>:
ð39Þ
These relations are used to build a second- and third-order accurate Lax-Wendroff-type scheme [24]. For convenience, we
introduce �wjþ1

2
the mean value of wj and wjþ1 defined by
wjþ1
2
¼ 1

2
ðwj þ wjþ1Þ: ð40Þ
Second-order numerical fluxes
Let us define
un
0 ¼

1
2
ðun

j þun
jþ1Þ for u ¼ u; p and pu: ð41Þ
Together with the following numerical fluxes, the Godunov-type scheme (27) is proved to be formally second-order accurate
in both space and time:
u�;O2
jþ1

2
¼ un

0 �
Dt
2

pjþ1 � pj

Dmjþ1
2

;

p�;O2
jþ1

2
¼ pn

0 �
Dt
2
ðqcÞ2jþ1

2

ujþ1 � uj

Dmjþ1
2

;

ðpuÞ�;O2
jþ1

2
¼ ðpuÞn0 �

Dt
2
ðuðqcÞ2Þjþ1

2

ujþ1 � uj

Dmjþ1
2

þ �pjþ1
2

pjþ1 � pj

Dmjþ1
2

 !
;

8>>>>>>>>><>>>>>>>>>:
ð42Þ
where un
0, pn

0 and ðpuÞn0 are given by (41) and nodal masses by (30). Indeed, using Taylor expansions, one finds that the trun-
cature error on each equation is in OðaDt þ bDxÞ3. The proof is rather long and is not detailed here.

Remark 4. Instead of the above last component flux, one could also have taken gðpuÞ� ¼ p�;O2u�;O2. The resulting scheme
would therefore be close to the one proposed by Kashiwa-Lee [26]6, but would not be stricto sensu second-order accurate.

Third-order numerical fluxes
Let us define
un
0 ¼

7
12
ðun

j þun
jþ1Þ �

1
12
ðun

j�1 þun
jþ2Þ for u ¼ u; p and pu: ð43Þ
Together with the following numerical fluxes, the Lagrangian scheme (27) is proved to be formally third-order accurate in
the finite-difference sense, in both space and time:
hybridation between the first- and second-order fluxes differs, along with the choice of limiters (see below).
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u�;O3
jþ1

2
¼ un

0 �
Dt
2

pjþ1 � pj

Dmjþ1
2

þ Dt2

6Dmjþ1
2

ðqcÞ2jþ1
ujþ2 � uj

Dmjþ1
2
þ Dmjþ3

2

� ðqcÞ2j
ujþ1 � uj�1

Dmj�1
2
þ Dmjþ1

2

 !
;

p�;O3
jþ1

2
¼ pn

0 �
Dt
2
ðqcÞ2 jþ1

2

ujþ1 � uj

Dmjþ1
2

þ Dt2

3
ðqGðqcÞ2Þjþ1

2

ujþ1 � uj

Dmjþ1
2

 !2

þ Dt2

6Dmjþ1
2

ðqcÞ2jþ1
2

pjþ2 � pj

Dmjþ1
2
þ Dmjþ3

2

�
pjþ1 � pj�1

Dmj�1
2
þ Dmjþ1

2

 !
;

ðpuÞ�;O3
jþ1

2
¼ ðpuÞn0 �

Dt
2
ðuðqcÞ2Þjþ1

2

ujþ1 � uj

Dmjþ1
2

þ �pjþ1
2

pjþ1 � pj

Dmjþ1
2

 !

þ Dt2

6Dmjþ1
2

ðuðqcÞ2Þjþ1
2

pjþ2 � pj

Dmjþ1
2
þ Dmjþ3

2

�
pjþ1 � pj�1

Dmj�1
2
þ Dmjþ1

2

 !

þ Dt2

6Dmjþ1
2

�pjþ1
2
ðqcÞ2jþ1

ujþ2 � uj

Dmjþ1
2
þ Dmjþ3

2

� ðqcÞ2j
ujþ1 � uj�1

Dmj�1
2
þ Dmjþ1

2

 !

þDt2

3
ðqGuðqcÞ2Þjþ1

2

ujþ1 � uj

Dmjþ1
2

 !2

þ Dt2

3
ðqcÞ2 jþ1

2

ujþ1 � uj

Dmjþ1
2

 !
pjþ1 � pj

Dmjþ1
2

 !
;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð44Þ
where un
0, pn

0 and ðpuÞn0 are given by (43). The proof has been established using a symbolic computation software and is not
detailed here.

Remark 5. If the terms in (44) involving the fundamental derivative G are dropped, the resulting scheme is no longer third-
order accurate on smooth flows.

Limiting procedures
These high-order numerical fluxes must be connected to first-order ones to correctly treat discontinuities. This is done via

a limiter u:
u�;lim
jþ1

2
¼ u�;O1

jþ1
2
þujþ1

2
u�;ON

jþ1
2
� u�;O1

jþ1
2

� �
;

p�;lim
jþ1

2
¼ p�;O1

jþ1
2
þujþ1

2
p�;ON

jþ1
2
� p�;O1

jþ1
2

� �
;

ðpuÞ�;lim
jþ1

2
¼ p�;O1

jþ1
2

u�;O1
jþ1

2
þujþ1

2
ðpuÞ�;ON

jþ1
2
� p�;O1

jþ1
2

u�;O1
jþ1

2

� �
;

8>>>><>>>>:

where the first-order numerical fluxes are given by (28) and the second ðN ¼ 2Þ or third ðN ¼ 3Þ ones are respectively given
by (42) and (44). It remains to detail the limiter u. By analogy with the usual artificial viscosity formulation, one may choose
a limiting procedure based only on the velocity field, introducing
Du�j ¼
u�

jþ1
2
� u�

j�1
2

Dmj
;

Dujþ1
2
¼ ujþ1 � uj

Dmjþ1
2

;

8>>><>>>: and

r�
jþ1

2
¼

Du�j
Dujþ1

2

;

rþ
jþ1

2
¼

Du�jþ1

Dujþ1
2

:

8>>>><>>>>:

Various limiters can therefore be defined. In the following sections, we will use
ujþ1
2
¼max 0;min 1; r�jþ1

2
; rþ

jþ1
2

� �� �
; the Minmod limiter; ð45aÞ

ujþ1
2
¼max 0;min 1;2r�jþ1

2
;2rþ

jþ1
2
;
r�

jþ1
2
þ rþ

jþ1
2

2

 ! !
; the van Leer limiter: ð45bÞ
To benefit from upwind limiting, one may also choose another procedure based on the linearized Riemann invariants as was
done in Section 5.2.3, defining
Jþ;ON
jþ1

2
¼ u�;ON

jþ1
2
þ ðqcÞ�1

j p�;ON
jþ1

2
;

J�;ON
jþ1

2
¼ u�;ON

jþ1
2
� ðqcÞ�1

jþ1p�;ON
jþ1

2
;

8<:

and enforcing these fluxes to lie in the TVD or MP intervals, respectively defined by (35a), (35b) and (36a), (36b). The limited
values p�;lim

jþ1
2

and u�;lim
jþ1

2
are then obtained by solving the linear system (34). If J�;ON

jþ1
2

–J�;lim
jþ1

2
we set ðpuÞ�;lim

jþ1
2
¼ p�;lim

jþ1
2
:u�;lim

jþ1
2

. Whereas
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Fig. 4. Bizarrium test problem at t ¼ 8� 10�5 s on 1000 cells (CFL = 0.3), using the vNR (lines) and BBC (symbols) schemes with artificial viscosities (21)–
(24) with cq ¼ 4 and cl ¼ 1 (Density in kg/m3 and pressure in GPa).
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Fig. 6. Same as Fig. 4 with variants around the artificial viscosity (24). The Christensen’s improvement (see Section 5.1.3) is used with limiters (25a)
(bottom right), (25b) (bottom left) and (25c) (top right).
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6. Numerical results

The various Lagrangian numerical schemes reviewed in Section 5 are now evaluated on the Bizarrium test problem de-
fined in Section 4. For all the following graphs, the CFL number is fixed to 0.3 for vNR-type schemes and 0.6 for Godunov-type
ones. Results are plotted at time t ¼ 8� 10�5 s.

6.1. vNR-type schemes

Density and pressure profiles obtained using the vNR and the BBC schemes on 1000 cells are plotted in Fig. 4. A zoom on
the density around the rarefaction shock feet and the isentropic compression, for three different meshes (1000, 4000 and
16,000 cells) is also plotted in Fig. 5 for both schemes. In each case, the four artificial viscosities formulations (21)–(24) have
been tested. As in [28,39,50], the quadratic and linear coefficients have been set to cq ¼ 4 and cl ¼ 1.
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Fig. 7. Bizarrium test problem: vNR-type schemes. Error ErrðpCDÞ in GPa vs. the number of cells (see (46)).
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Fig. 9. Bizarrium test problem at t ¼ 8 � 10�5 s (CFL = 0.6), using the second-order GAD, GAIA and GoHy schemes with the Minmod limiter. Zoom on the
density around the rarefaction shock feet (left) and the isentropic compression (right). (Density in kg/m3 and pressure in GPa).
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These figures show that vNR and BBC results are very close at the first sight and lead to the following conclusions.

1. The rarefaction shock is not captured when using the Rosenbluth (22) or Landshoff (23) q formulations. This is due to the
fact that q is set to zero in expansive waves.



Table 3
Total energy balance: relative error j Eðt¼8�10�5Þ�Eð0Þ

Eð0Þ j with EðtÞ ¼
RM

0 eðm; tÞdm, for the vNR and the BBC schemes using the Magical q combination (cq ¼ 4 and
cl ¼ 1).

nb cells vNR scheme using (47a) vNR scheme using (47b) BBC scheme using (19)

2000 1.77473e�05 2.66159e�05 5.92283e�16
4000 2.50355e�05 2.75073e�05 2.96142e�15
8000 2.22746e�05 2.46182e�05 9.87146e�15
16,000 2.67333e�05 2.60038e�05 2.60605e�14
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Fig. 11. Bizarrium test problem at t ¼ 8� 10�5 s (CFL = 0.6), using the third-order GAIA and GoHy schemes with the Minmod limiter. Zoom on the density
around the rarefaction shock feet (left) and the isentropic compression (right).
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2. The rarefaction shock as well as the isentropic compression are not captured when using the von Neumann–Richtmyer
(21) q formulation: a linear viscosity seems to be necessary to correctly compute composite waves.

Among all q formulations that have been tested, the ‘‘Magical” q combination is the only one which satifies these require-
ments. This is therefore the one we have retained for Fig. 6. In previous computations, we have set cq ¼ 4 and cl ¼ 1, which are
greater values than those commonly used: according to [4], standard quadratic and linear coefficients are respectively
cq ¼ 1:5 and cl ¼ 0:06. Fig. 6 (top-left) clearly shows that this set of parameters does not work. In particular, the linear coef-
ficient is too small. Indeed, we have checked that with cq ¼ 1:3 and cl ¼ 1, which are parameters recommended in [4, p. 277]
for the second-order estimations of Du in the q computation, results were qualitatively similar to those obtained setting cq ¼ 4
and cl ¼ 1. The vNR and BBC schemes together with a second-order estimation of Du (see Section 5.1.3) have therefore been
evaluated with this set of coefficients. Density profiles obtained with limiters (25a)–(25c) are also given in Fig. 6, which shows
that the Minmod limiter (which is the most dissipative one) is the only one which seems to work. Together with the fact that cl

must be sufficiently large7, this seems to tell that numerical dissipation is the key point when dealing with non-convex EOS.

Remark 6. A more general formulation of (24) with quadratic term activated in both compression and expansion,
q ¼ �cqqDujDuj � clqcDu, gives similar results. Since such a formulation is more dissipative than (24), the physically stable
solution is also captured, including with Christensen’s improvement when Minmod-limited. Nevertheless, it does not lead to
qualitatively better results than those of Fig. 6 with (25b) and (25c) since the artificial dissipation in compressive waves is
strictly the same.
rence solution

7 As was said in Section 5.1.3, the quadratic viscosity concentrates numerical dissipation near the shock front while the linear one has a more diffuse effect.
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A weak convergence study has also been performed. We have chosen to evaluate the mean pressure around the contact
discontinuity and to compare it to its theoretical value pexact ¼ pyz ¼ pzy (given in Table 2). Let xCD denote the position of the
contact discontinuity and let xG ¼ xCD � 0:05 and xD ¼ xCD þ 0:05. Corresponding mass coordinates are denoted mG and mD.
The measure of the error is defined by
8 See
ErrðpCDÞ ¼
def pexact � 1

mD �mG

Z mD

mG

pnumdm
���� ����: ð46Þ
This error is plotted in Fig. 7 for the vNR and the BBC schemes, for meshes of 128 � 2k cells (k varying from 0 to 12).
As expected, the von Neumann–Richtmyer, Rosenbluth and Landshoff q formulations, as well as the Magical q one with

a Christensen limited second-order evaluation of Du, fail to converge to the exact solution (with both vNR and BBC
schemes). But these graphs contain additional informations: even with the Magical q formulation, the vNR scheme fails
to converge. We infer that this is due to non-conservation of total energy, which is a well-known deficiency of the vNR
scheme8: see Table 3 where the relative error on the total energy balance is reported, using
en
j ¼ en

j þ
1
8
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2
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This intuition is strengthened by the BBC scheme results for which all tested q formulations also fail to converge, except
the Magical q combination with an appropriate set of coefficients. A second-order accurate evaluation of Du then does work,
but with a dissipative limiter (Minmod). The BBC scheme’s success is attributed to the discrete conservation of total energy
(Table 3).

6.2. Godunov-type schemes

Density profiles obtained with the various Godunov-type schemes presented in Section 5.2 are plotted in Figs. 8–11. Fig. 8
shows that the first-order Godunov-type scheme recalled in Section 5.2.1 seems to capture the physical solution, in contrast to
all the presented high-order extensions without limiters. This defect is corrected for second-order extensions by using the
also the much simpler plane infinite shock problem of Noh [36] to illustrate such a deficiency.
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Minmod limiter (Fig. 9). All other standard limiters (superbee, TVD, MP or van Leer) are not dissipative enough to correctly capture
composite waves9 (Fig. 10) and even when Minmod-limited, both third-order extensions fail on the Bizarrium test problem (Fig. 11).

The same weak convergence study as the one performed in the previous section confirms these facts. The error on the
mean value of the contact discontinuity pressure ErrðpCDÞ is plotted in Fig. 12. The first-order Godunov-type scheme (27–
28) converges to the reference solution without any ad hoc numerical coefficient as well as the second-order GAD, GAIA
and GoHy extensions with the Minmod limiter. With the other basic limiters presented in Section 5.2 (which are less dissi-
pative), the physical solution is not captured. Both GAIA and GoHy third-order extensions also fail with these limiters. As
with vNR-type schemes, these results indicate that in order to capture the physical solution, such Godunov-type schemes
must provide an appropriate level of numerical dissipation.

7. Conclusion

A thermodynamically consistent non-convex EOS that can be easily introduced in Eulerian as well as Lagrangian hydro-
codes for test purposes has been proposed, along with a reference solution for an initial value problem exhibiting a complex
composite wave pattern (Bizarrium Riemann problem). The solution consists in a left-facing expansive composite wave (rar-
efaction/rarefaction shock/rarefaction) and a right-facing compressive composite one (shock/sonic isentropic compression/
shock) separated by a contact discontinuity. In contrast to the standard theory (convex EOS), the entropy condition is not
sufficient to guarantee uniqueness of solutions to Riemann problems and one has to resort to the Liu-Oleinik criterion (exis-
tence of viscous profiles). This suggests that numerical schemes require strong enough dissipation to capture the admissible
solution. This point has been numerically examined.

Two standard Lagrangian shock capturing approaches, both based on a finite volume method, have been recalled (vNR
and Godunov-type schemes) and evaluated on the Bizarrium test problem. In particular, a complete description of several
state-of-the-art high-order Godunov-type schemes applicable to general EOSs has been provided.

The vNR Lagrangian scheme fails on that problem, most probably due to the fact that the total energy is not conserved
with this scheme, whereas the unstaggered in time conservative BBC version reveals satisfactory, using a particular (and
somehow unusual) artificial viscosity formulation, with linear viscosity activated on both compression and expansion waves.
To improve shock resolution, the common practice of a second-order accurate evaluation of Du in the computation of the
artificial viscosity then does work, but with a dissipative limiter (Minmod). In a word, this particular vNR-type scheme,
extendable to nD Cartesian grids via 1D remapping and directional splitting, does converge provided it contains strong en-
ough numerical dissipation.
9 The MP intervals (36a) include the TVD ones (35a) (see Section 5.2.3).
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is solution to the linearized gas dynamics equations. The system is closed with a perfect gas EOS, whose adiabatic exponent is
c ¼ 7=5. The length of the computational domain is equal to 1, and we set k ¼ 2p, q0

0 ¼ 1 and p0
0 ¼ 5=7, so that the acoustic

wave propagates at speed c ¼ 1. Periodic boundary conditions have been used. The error which has been measured here is
the L1 norm of the velocity deviation away from the above exact solution after one revolution (thus at time t ¼ 1), divided by
e which has been set to 10�8.

The GAD, GoHy and GAIA schemes have been tested, without limiters as well as with the ones described in Section 5.2.
Results are given in Fig. 13. Theoretical accuracy orders are almost recovered for all schemes without limiter, as well as for
the GAIA and GoHy ones when MP-limited. Note that the limit of the linear regime is reached with the 5th-order GAIA-MP
scheme with 128 cells.

A.2. Strong isentropic compression

Now we consider the planar Kidder’s test problem [27], which consists in the isentropic compression of a perfect gas
whose adiabatic exponant is c ¼ 3. The initial condition is given by:
qðX; 0Þ ¼ qc�1
e X2þqc�1

i
ðL2�X2Þ

L2

� � 1
c�1

;

uðX; 0Þ ¼ 0;

pðX;0Þ ¼ pe
q
qe

� �c
;

8>>>>><>>>>>:

with L ¼ 1, pe ¼ 100, qe ¼ 1 and pi ¼ 1. From the isentropic condition piq

�c
i ¼ peq

�c
e we get the initial value for qi. We impose

a wall boundary condition at X ¼ 0 and the pressure law pðxe; tÞ ¼ pehðtÞ�c on the external surface xe ¼ xðX ¼ L; tÞ. Here hðtÞ is
the self-similar motion law, i.e. xðX; tÞ ¼ XhðtÞ, defined by
hðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

t2
c

s
with tc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2c
L2

ee � ei

s
;

tc being the collapse time and e the internal energy. The self-similar solution is therefore given by
qexðx; tÞ ¼ 1
hðtÞ q x

hðtÞ ; 0
� �

;

uexðx; tÞ ¼ � x t
t2
c hðtÞ2

;

pexðx; tÞ ¼ pe
qexðx;tÞ

qe

� �c
:

8>>>><>>>>:

The experimental order of convergence has been measured on the L1 norm of U � Uex where U ¼ ðs;u; eÞt at time t ¼ 0:5tc .
Results are given in Fig. 14. As expected, third- and fourth-order accuracy is not recovered with the GAIA scheme on the full
nonlinear Euler equations. Theoretical orders are recovered with the GoHy scheme without limiter or when MP-limited.
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